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Abstract—Heat transfer from axisymmetric heat sources at the surface of a rotating disk is investigated
under laminar flow conditions for incompressible flow with constant physical properties. The energy
equation including radial conduction is solved numerically assuming that both natural convection and
viscous dissipation effects are negligible. The successive overrelaxation technique used is found to be
unconditionally stable. A solution can be obtained for any specified radial surface distribution of either
temperature or heat flux. Several boundary conditions are presented, including two for which an exact
solution exists. The heat-transfer coefficients obtained for an isothermal disk and for the case of a power
law temperature distribution are found to be in excellent agreement with existing solutions. In the present
work, the temperature field and surface heat flux are obtained for the case of a circular band source
(heated ring) of arbitrary width on an adiabatic disk surface. Results obtained for various Prandtl
numbers and source widths indicate the existence of a conduction dominated region at low Reynolds
number and a convection dominated region at high Reynolds numbers. Correlations between surface
heat flux and wall shear stress over the heat source, as well as the temperature field in the vicinity of the
disk surface, are also given.
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NOMENCLATURE
A, constant in g vs 1, relationship;
B, constant used in power law temperature

profile;

C, C’, C", constants used in laminar Nu vs Re;
correlations;

C",C"", constants used in turbulent Nu vs

Re, correlations;

specific heat at constant pressure;

d, fluid density ;

, constant in g vs 7,,, relationship;

£, radial friction factor;

F, dimensionless radial velocity ;

G, dimensionless tangential velocity ;
Gr,  Grashoff number:

h, local heat-transfer coefficient ;

h, average heat-transfer coefficient ;

H, dimensionless axial velocity ;
I, width of band source;

k, fluid thermal conductivity ;

m, exponent of power law temperature
profile;

Nu, local Nusselt number;

Nu, average Nusselt number;

Pr, Prandt] number;

q, heat flux per unit area;

0, dimensionless heat flux per unit area;
r, radial coordinate ;

Re,  Reynolds number, wr?/v;

Re,, source Reynolds number, wRZ/v;
s  characteristic length scale of heat
source;
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T, local temperature;

T, characteristic temperature scale of
source;

T,, ambient temperature;

u, radial velocity ;

v, tangential velocity ;

w, axial velocity;

z, axial coordinate.

Greek symbols

x, thermal diffusivity;

1, dimensionless axial coordinate;

0, dimensionless temperature ;

1, absolute viscosity;

v, kinematic viscosity ;

0, dimensionless radial coordinate;

T, radial wall shear stress;

, disk angular velocity.
INTRODUCTION

HEAT transfer from a rotating body is of major
importance in the analysis and design of turbo-
machinery, especially when high temperature fluids
are present. The rotating disk offers a simplified
model with which more complex rotating com-
ponents can be examined. Due to the simple
geometrical configuration, analysis is considerably
less involved than if the actual components were
considered.

Flow and heat-transfer characteristics in the three-
dimensional boundary layer over a rotating disk
have been studied extensively. In the present work, a
method is presented to predict the heat-transfer
characteristics for any axisymmetric heat source at
the disk surface.

The structure of the laminar flow field induced by
the rotation of a large disk in an infinite incom-
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pressible fluid has been established, first by von
Karman [1] and later numerically improved by
Cochran [2]. This structure has been experimentally
verified by Cham and Head [3], Erian and Tong [4]
and others.

Heat transfer from a rotating disk under laminar
flow conditions has been studied extensively for an
isothermal disk surface. Wagner [5] first established
the heat transfer from an isothermal disk into air (Pr
=0.72) as Nu=0.335Re%®. Millsaps and Pohl-
hausen [6], using different methods, found that Nu
= CRe" for 1 < Pr < 10, where C increases with
Prandtl number. Sparrow and Gregg [7] further
examined the effect of Prandtl number on heat
transfer from an isothermatl disk, and found that Nu
= CRe"% is valid for 0.01 < Pr < 10, where the
constant also increases with Prandtl number. Asymp-
totic relations were also found between C and Pr at
very high and very low Prandtl number.

Hartnett [8] solved for heat transfer from a
rotating disk with a power law radial temperature
distribution, (T—T,) = Br", at Pr =0.72 and found
that Nu = CRe®* with the constant becoming larger
with increasing m. Radial conduction terms were
neglected in this work.

Davies [9] developed an approximate method to
predict heat transfer from a rotating disk with
arbitrary radial temperature distribution by applying
the method of sources, ie. the disk surface is
regarded as an assembly of concentric circular heat
sources forming the desired surface temperature
distribution. An integral equation was developed to
predict the heat-transfer coefficient at the disk
surface but was valid only at large Prandtl numbers
when the thermal boundary layer was deeply
imbedded in the momentum boundary layer. Once
again, radial conduction was neglected.

Experimentally, Kreith et al. [10] have fully
investigated the heat transfer from an isothermal
disk and have found that Nu = 0.345Re®* for Pr
= (.72 under laminar conditions. Popiel and Bogus-
lawski [ 11] have determined the combined effects of
free and forced convection and have found Nu
= 0.33(Gr+ Re?)*?% on an isothermal disk at Pr
=0.71. Many other experimental works are
available.

Ostrach and Thornton [12] have investigated the
effect of compressibility and Sreenivasan [13] has
investigated the effect of natural convection on the
velocity field and the heat transfer from a rotating
disk.

Investigations of the turbulent flow and heat
transfer from a rotating disk have been conducted by
Cebeci and Abbott [14], Cooper [15], Davies [16],
Koosinlin et al. [17] and Kreith et al. [10].

Most of the heat-transfer work previously accom-
plished on the rotating disk is for an isothermal
surface. In most practical applications (a turbine
wheel, for example) temperature distributions are
axisymmetric but arbitrary in the radial direction.

The present work accommodates any radial

distribution of temperature or heat flux, and shows
the effects of Prandtl number, Reynolds number and
radial conduction on surface heat transfer coefficients
from various source geometries. Furthermore, some
ideas are offered to extend the results of this work to
turbulent flow situations by direct analogy.

ANALYSIS

The equations of motion for the flow due to a
rotating disk have been solved exactly by von
Karman [1] and the solution improved by Cochran
[2]. Due to their consideration of an infinite disk
rotating in an infinite fluid, similarity functions of the
velocity, dependent on a single similarity variable,
were obtained. These are defined as F(y) = u/wr,
G(n) = v/or and H(n) = w/(vw)"? where u is the
radial velocity, v the tangential velocity, w the axial
velocity and 5 = z(w/v)'/? is the dimensionless axial
distance from the disk surface.

The introduction of an axisymmetric heat source
at the disk surface will generate a temperature field
T(r,z) in its vicinity due to convection and con-
duction. If one ignores natural convection effects,
significant errors will admittedly be introduced at
high relative source temperatures and at very low
Reynolds numbers. However, in most practical cases,
forced convection is far more significant than free
convection. Therefore, we shall ignore natural con-
vection effects in this work which results in decoup-
ling the momentum and energy equations. As a
consequence, the velocity functions, F, G and H,
remain unchanged by the introduction of heat
sources at the disk surface.

Having established the flow field, we now consider
the axisymmetric energy equation in cylindrical
coordinates for steady, incompressible laminar flow
with constant fluid properties and neglecting viscous
dissipation. The equation for the temperature is
given by

eT 3 3T 1¢T 8*T
ch<uaT+\v%) = k(ﬁr.er‘ ‘;"f’ = ‘), (1)

rér @ éz?

with the boundary conditions
)
% T(0,z) =0 from radial symmetry, (2a)
el

T(r,z)=T, asr-oc andfor z - o, (2bgc)

and

R
T(r,0) or ;Z T'(r,0) is prescribed. (2d)
C

Depending on the configuration of the heat source,

the energy equation can be nondimensionalized by

introducing the following variables in addition to the

known velocity functions F, G and H and distance 4:
T-T, r Riw v ouc

= ® p=- Re,=-"22 pr="=H0
=1 PR o Re=— o Pr= =7

where R, and T, are characteristic length and

0
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temperature scales of the heat source. The dimen-
sionless energy equation becomes
a2 %6 00

~— + Re, =~ — Re,PrH —
5,02+ es@l’]z err 6;7

fal
+La —szeSPrF)g =0 (3)
P cp

with the boundary conditions

N

<00, =0 (4a)
ép
0(p,n) =0 asp - ocand/ory - oo (4bc)
and
é . .
6(p,0) or a 0(p,0) is prescribed. (4d)

Three surface boundary conditions are considered
here. Two correspond to available exact solutions.
The first is the isothermal disk with 8(p,0) being a
constant, and the second is the power law tempera-
ture distribution with 8(p,0) = Bp™. These two
boundary conditions are used to provide a com-
parison between established results and those of the
present work. The third boundary condition is for a
concentric ring source of width I on a disk surface
which is otherwise adiabatic, as shown in Fig. 1. The
width of the ring is arbitrary and could vary from

equation’s matrix, especially at high Reynolds num-
bers. The instabilities which would have existed if
central difference formulae were used for the radial
convective term are discussed by Runchal and Wolf-
shtein [18] and by Runchal [19].

In the ring source configuration, especially near
the boundary between the source and the adiabatic
surface and also for very small I/R,, large tempera-
ture gradients are expected. To accommodate rapid
changes in temperature, the entire finite difference
formulation uses non-uniform grid spacing. The grid
contains up to 80 points in the radial direction and
18 points in the axial direction. The locations of the
grid points are chosen to minimize errors. The finite
difference formulation of equation (3) and the
associated boundary conditions, as well as program-
ing details and error analysis are described in [20].
Values of the functions F, G, and H are obtained
directly or by interpolation from [2]. All com-
putations were performed in double precision on an
IBM 360/65 computer.

DISCUSSION OF RESULTS
The numerical solution, which gives the tempera-
ture field, permits the calculation of the local heat-
transfer coefficient h and the local Nusselt number
Nu from the following equations:

very small I, corresponding to an axisymmetric line hiviw)'?fk = ;?9(,0,0)/0(/),0) (6)
source, to any width desired. The ring source radius d o
R, and temperature T, are chosen at the source an
midwidth, and the heat flux from the source is Nu = hr/k
considered constant. Therefore, the third boundary = h(v/w)'"2(Re}" k. (7)
condition may be written as follows:
R —1/2 R,+1/2

R 0 forp < SR/ andp>wsR/

c

_ — 5 s 5

o 100 R—12 Ry+1/2 )

constant for R <p< -

Any physically possible radial distribution of heat
flux or temperature at the disk surface may be
accommodated in the present solution. It should be
noted that radial conduction is included here. This
will not affect the isothermal case since radial
conduction is identically zero, but may affect the
power law temperature distribution and the band
source geometry, especially at low Reynolds
numbers.

Equation (3), a convective diffusion equation for
0(p,n), is elliptic and lends itself to numerical
relaxation techniques for the solution of the cor-
responding finite difference formulation. A three-
point central difference formula is used to approx-
imate second derivatives, and a two-point central
difference formula is used to approximate the axial
first derivative. Because of the strongly convective
nature of the radial flow, a backward difference
formula is used to approximate the radial first
derivative. This technique stresses the upstream
effects and improves the stability of the difference

s s

These properties, which are in general radius
dependent, are presented hereafter as averages over

the source area and denoted by h and Nu. The
results are discussed below, first, for an isothermal
disk and a disk with power law temperature
distribution and, then, for an adiabatic disk with a
constant heat flux band source. The first two cases
are presented for comparison and to show the
reliability of the numerical solution.

Comparison with exact solutions

For the isothermal disk, the relation Nu = CRe®*
is found to be valid, with C equal to h(v/w)!/*/k. It is
noted that C depends only on Pr and h is constant
everywhere on the disk surface for a particular Pr.
Table | shows the values of C as given by various
references and compares them with the present
calculations. The agreement is very good in all cases.

In the present formulation, radial conduction has
always been included. In the above case of the



604

wi{z)

D. L. OeHLBECK and F. F. ERIAN

z|

JP—
e
e

ay

|
7

)
'.

Rs

ulr,z)
llllllll

—

"]

% _
/ |
///

N

o SN AT

—_—

w

F1G. 1. Flow and source geometry.

Table 1. Data comparison for an isothermal disk

h(vjw)'? Prandti number

k 0.001 0.01 0.1 0.72 I 10 100 1000
Present work 0.00152 0.00870 0.0763 0.341 0.394 1.131 2.684 6.002
Sparrow and Gregg [7] 0.00088* 0.00871 0.0766 0.396 1.134 2.687 6.205%
Wagner [5] 0.335
Millsaps and Pohlhausen [6] 0.28+
Hartnett 8] 0.330
Kreith, Taylor and Chong [10} 0.34
Popiel and Boguslawski { 11] 0.33

*These values are based on asymptotic solutions and are not exact.

+This value is due to the use of ¢, in Pr instead of ¢,

isothermal disk, the contribution of radial con-
duction was shown to be identically zero as expected.
In the case of a power law radial temperature profile,
0 = Bp™, radial conduction becomes significant at
low Re and/or large m. Table 2 compares h(v/w)"/?/k
as given by Hartnett [8], who neglected radial
conduction, with the present calculations. The agree-
ment is very good for small m but deviates
significantly for m = 4. It should be noted here that
calculated values of h(v/w)'?/k show a gradual
increase with radial distance from the disk center,
and reach a constant asymptotic value at large radii.

Table 2. Data comparison for a power law temperature
distribution, § = Bp™, at Pr = 0.72

h(‘,/,rw)hz m ]
k 0 | 2 4
Present work* 0.341 0.436 0.519 0.573
Hartnett [8] 0.330 0.437 0.524 0.661

*Calculated at large Re where radial conduction effects
are small.

On the other hand, Hartnett's results give a constant
heat-transfer coefficient everywhere on the disk, the
values of which are always higher than the present
predictions (except when m = 0, where we attribute
the difference to numerical error). The difference
between the asymptotic values of h(vjw)''*/k as
calculated here and those of Hartnett [8] increase
with m. It practically disappears for small m. This
behavior is attributed to the extremely large tem-
perature gradients at large radii, i.e. large Re, when m
is high. Therefore, radial conduction retains its
significance at high Re.

Heat transfer from a ring source
For the band heat source, sketched in Fig. 1, the
results exhibit a substantially different behavior than
in the above cases. A qualitative description of this
behavior may be explained as follows. At very high
Re,, where radial conduction effects can be safely
ignored, equation 3 may be written as
2 b

0 20
= Re,PrFp ‘—) +Re,PrH "
oy

R A2 2.
& on? on

8)
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NUSSELT NUMBER, LOG SCALE

REYNOLDS NUMBER, LOG SCALE
F1G. 2. Qualitative behavior of the various heat-transfer mechanisms.

Since each term contains Reg, 8(p,#) is independent
of Re,, assuming that n, does not vary either.
Therefore, since h(v/w)'2/k becomes effectively con-
stant, the Nusselt number which contains R must be
proportional to Re?* and the relation Nu = C'Re®-,
shown as curve IV in Fig. 2, must be valid in that
region. On the other hand, at very low Re,, both
convective terms become insignificant. If we define a

new axial coordinate #' = z/I, equation 3 reduces to
the pure conduction equation and is given by
M0 140 R\? 0%6
Y = 0. 9
Efp2+p <7p+<1> on'’? ©)

Here also, the temperature field is unaffected by Re,
and h(v/w)V?/k is again constant for a particular
I/R,, thus Nu = C"Re® with C” > C". This behavior
is indicated by curve II in Fig. 2.

104

As Re, decreases to intermediate values in equa-
tion 8, h(v/w)'?/k is shown to gradually decrease
below its constant value obtained at high Re,. This
behavior is due to the inapplicability of the constant
value of the similarity variable 5, near the disk
center. In this work, as well as in the work of
Millsaps and Pohlhausen [6], 1, increases as the
center of the disk is approached, thus increasing the
thermal boundary-layer thickness and reducing the

Nu. Curve V in Fig 2
qualitatively.

The total heat transfer coefficient obtained here by
solving equation (3), is shown qualitatively as curve |
in Fig. 2. Curve III, which corresponds to the effect
of radial conduction on the overall heat-transfer
coefficient, is obtained by subtracting from curve I
the contribution of curve V. Curve III. which
coincides with curve 11 at low Re,, begins to decline

shows this behavior

= s 0.0001
- ———— Nu=C Reg /,/ 06081/
103 0.1 <
/
1.0/
2.0
3
z 10° 1/Rq
_C
0.0001 10.40
. 0.001 596
10 0.01 2.97
0.1 1.31
10 0482
20  0.341
100 [ IR EER | llLA_ILJJ 1111m| JLL!UHI [
100 10" 102 103 104 105 108
Res

F1G. 3. Average Nusselt number dependence on source Reynolds number for different I/R, Pr = 0.72.

HMT Vol. 22, No. 4—-H



606

in significance as Re, increases. Although the
contribution of the radial conduction to the Nu
continues to increase, its relative effect becomes
progressively smaller as the Re, increases. This is
certainly expected on physical grounds.

The transition between the convection-dominated
region and the conduction-dominated region con-
sists of a bulge spanning a large range of Re, over
which both effects are important. This bulge gra-
dually merges at its two ends with the corresponding
asymptotic states of the Nu vs Re,. The amplitude

D. L. OsnLBeck and F. F. ERIAN

for Pr values of 0.72, 6.82 and 65, corresponding to
air, water and light oil, respectively, are practically
identical in shape, i.e. the amplitude of the bulge and
the value of C”/C'. Increased Pr tends to make the
effect of radial conduction limited to lower values of
Re,. Here also €’ doubles as P increases by an order
of magnitude. It should be noted that in this figure as
well as in the previous figure calculations are carried
out up to a Re, of 10° to show the significant trends,
In reality, the flow is turbulent for Re, = 3 x 10°,
Figures 5 and 6 show typical radial temperature

and location of this bulge, as well as the values of ' profiles near the heat source in convection-

104 ¢
- — 65.0
F ____ Nu=c ReD®
= 6.82

3 Eq. 3

10° - I/Rg = 0.01 0.72

- Pr
3
Z 102 L~
": Pr C
- ~
0.72 297
10! 6.82  6.42
65.0 14.2

=
L i

100 i bAoAl | 11111111 L va! . L»Hml Poprie R R

100 10’ 102 103 104 10° 106
Reg

FiG. 4. Average Nusselt number dependence on source Reynolds number for different Pr, I/R, = 0.0],

and C", depend on both I/R, and Pr as will be shown
below.

The effect of I/R, at a particular Pr, as shown in
Fig. 3, is to move the convection dominated region,
and consequently the bulge, to a lower Re, as I/Re
increases. The amplitude of the bulge above the line
given by Nu = C'Re®* also decreases with increasing
I/R,. Therefore, as I/R,— 2, which corresponds to
the isothermal disk, the convection-dominated
region spans nearly the entire Re, range. On the other
hand, ¢’ approximately doubles each time I/R,
decreases by an order of magnitude and C'/C
becomes progressively greater than one. The reason
for the decrease in Nu as I/R, increases is that the
local heat-transfer coefficient h(v/o)'?/k decreases
along the radial direction over the source. Therefore,
the wider the source, the lower the average heat-
transfer coefficient and thus the Nu. The amplitude
of the bulge and the range of Re, at which it exists
become higher as I/R, decreases due to the fact that
radial conduction has a more significant influence
near thin sources even at large Re,.

Figure 4 shows the effect of Pr on the overall heat-
transfer coefficient at I/R; = 0.01. The three curves

dominated and conduction-dominated ranges of Re,,
respectively. It is interesting to note that for n/n,
> 0.15 the maximum temperature occurs radially
downstream from the outer edge of the heat source.
Figure 6 shows the nearly symmetric temperature
profile expected in the conduction-dominated field
close to the disk surface. The profiles lose their
symmetry as #/y, increases since some convection
effects are always present.

Typical axial temperature profiles at high Re, are
shown in Fig. 7. The thermal boundary-layer
thickness is marked on each figure. Figure 8. which
gives axial temperature profiles at low Re,, is self
explanatory.

Heat flux/wall shear stress correlation

The measurement of the wall shear stress under a
laminar or a turbulent boundary layer has been
attempted by several investigators [21,22], using a
small heated film. The theoretical justification of

these measurements is usually based on the relation
g = AtlP + D, (1)

and the analysis is, at best, approximate. However,
experimental evidence supporting the above ex-
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F1G. 5. Radial temperature profiles at high Re,, Pr = 0.72, y, = 8.0.
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F1G. 6. Radial temperature profiles at low Re,, Pr = 0.72, 1, = 8.0.
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F1G. 7. Axial temperature profiles at high Re,, Pr = 0.72,n_, = 8.0.
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F1G. 8. Axial temperature profiles at low Re,, Pr = 0.72, 5, = 8.0.
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F16. 9. Correlation between dimensionless heat flux and radial friction factor, Pr = 0.72.

pression abound. In his exact solution of the fluid
flow problem, von Karman [1] has shown that

T, = 0.51dv' 2%, (11)

and a radial friction factor f, may be defined as
follows,

Twr
= 0.5dc>r?

1.02

(Re)'2”

(12)

From the present numerical solution, a dimension-
less heat flux per unit area may be defined as,

-4
Q= k(w/mVH(T,—T,)

ey 1i2
= 57(,‘7%) —0(p.0).

(13)

Figure 9 shows the variation of Q with f.. Both at
low and high Re,, Q attains a constant value (not the
same constant), with a bulge in between analogous
to that appearing in the Nu vs Re, figures. A special
feature of the relation between Q and f, may be seen
if we consider a band source at a given fixed radius,
say 0.3m, on a disk spinning in free air. For this case,
7,, becomes proportional to »*?, and, in a region
where Q is constant, g becomes proportional to m!'?;
therefore the following relation is valid:

q= Azl (14)

wr

Figure 10 shows the behavior of the dimensional
heat flux per unit area as a function of the radial
component of the wall shear stress. The bulges
appearing above the shown lines correspond to those
in Fig. 9 for the same I/R_. It is interesting to note
that while the heat transfer from the source away
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103

609

_ 1/3
a=ATy

Eq.3, Pr=0.72

1074
(N/m2)

wr

F16G. 10. Dependence of heat flux per unit area on local wall shear stress in air at constant source radius,
R,=03m.

from the bulges is always proportional to tl2, the
mechanisms involved are different and so are the
constants of proportionality. At high values of 7, it
is convection, while at low values it is mostly
conduction. In practice, an additional constant, D, is
necessary to model the g vs t!/*> behavior. This
constant is the heat transfer from the source when
the disk is stationary.

CONCLUSION

The heat-transfer coefficient from a narrow band
heat source is shown to be considerably higher than
that obtained for an isothermal disk, but approaches

it as the source width increases. The relation Nu
= C'Re}’? is generally valid even at very low Re,,
with C' varying for different I/R_, Pr and whether the
mechanism is convection or conduction dominated.
The present problem is analogous to the starting
length problem on a flat plate in the sense that the
local heat-transfer coefficient decreases from its large
value at the source leading edge, reaching the value
for the fully heated surface downstream.

In analogy to the above observations, some
correlation between heat transfer from the isother-
mal disk and thinner band sources in turbulent flow
can be hypothesized. Kreith et al. [10] have found
experimentally that Nu = C'"Re®8 on an isothermal
disk in turbulent flow. Thus it seems reasonable to

expect that Nu = C"”Re®? in turbulent flow for a
band source of arbitrary width. Again the physical
grounds are that the isothermal disk and the thinner
band sources are joined by a continuous transition
which changes only the value of C"".

The 1/3 power law relating the heat flux per unit
area to the local wall shear stress is derived from the
present calculations. Design criteria may be obtained
from these calculations to construct a suitable device
to measure the wall shear stress.
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TRANSFERT THERMIQUE A PARTIR DE SOURCES AXISYMETRIQUES
A LA SURFACE D'UN DISQUE TOURNANT

Résumé—On étudie le transfert thermique a partir de sources de chaleur axisymétriques a la surface d’un
disque tournant dans un écoulement incompressible avec conditions de laminarité et de fluide a
propriétés constantes. L’équation d'énergie incluant la conduction radiale est résolue numériquement en
supposant négligeable la convection naturelle et la dissipation visqueuse. La technique de surrelaxation
successive utilisée est inconditionnellement stable. Une solution peut étre obtenue pour une distribution
radiale donnée de température ou de flux thermique. On présente plusieurs conditions aux limites dont
deux pour lesquelles il existe une solution exacte. Les coefficients de transfert thermique obtenus pour un
disque isotherme et pour une distribution de température en loi de puissance sont en excellent accord
avec des solutions existantes. Le champ de température et le flux thermique a la surface sont obtenus
dans le cas d’une source en anneau centré de largeur arbitraire, sur la surface adiabatique du disque. Les
résultats obtenus pour différents nombres de Prandtl et plusieurs largeurs de source montrent existence
d’une région a conduction dominante aux faibles nombres de Reynolds et d'une région a transport
dominant aux grands nombres de Reynolds. On donne aussi des formules liant le flux thermique
surfacique. et la tension pariétale sur la source de chaleur, ainsi que le champ de température au voisinage
de la surface du disque.

WARMEUBERGANG VON ACHSENSYMMETRISCHEN QUELLEN AN DER
OBERFLACHE EINER ROTIERENDEN SCHIEBE

Zusammenfassung —FEs wird der Wirmetibergang von achsensymmetrischen Wirmequellen an der

Oberfliche einer rotierenden Schreibe bei

laminarer,

inkompressibler Stromung mit konstanten

Stoffwerten untersucht. Die Energiegleichung wird mit Beriicksichtigung der radialen Wirmeleitung
unter der Annahme numerisch geldst, daf sowohl die natiirliche Konvektion als auch viskosititsbedingte
Dlsslpatlonseﬂ"ekte vernachldssigbar sind. Es stellte sich heraus, daf die schrittweise Uberrelaxationstech-
nik in allen Fillen stabil arbeitete. Man kann fiir jede spezielle radiale Verteilung der Temperatur oder
des Wirmeflusses auf der Oberfliche eine Losung erhalten. Es werden verschiedene Grenzbedingungen
angegeben, einschlieBlich zweier Bedingungen, fur die eine exakte Losung existiert. Es wurde eine
ausgezeichnete Ubereinstimmung des Wirmeubergangskoeffizienten fiir eine isotherme Scheibe und fir
den Fall einer exponentiellen Temperaturverteilung mit vorhandenen Losungen gefunden. In dieser
Arbeit werden das Temperaturfeld und der WirmefluB an der Oberfliche fiir den Fall einer
kreisringformigen Quelle (beheizter Ring) von betrichtlicher Breite auf einer adiabaten Scheibenober-
fliche berechnet. Die gewonnenen Ergebnisse fur verschiedene Prandtl-Zahlen und Quellenbreiten
deuten auf das Vorhandensein eines Bereichs bei niedrigen Reynolds—Zahlen hin, in dem Wirmeleitung
vorherrscht und eines Bereichs bei hohen Reynolds—-Zahlen, in dem Konvektion tiberwiegt. Dazu wurden
die Zusammenhinge zwischen dem WirmefluB an der Oberfliche und den Wandschubspannungen liber
der Wirmequelle, als auch das Temperaturfeld in der Umgebung der Scheibenoberfliche behandeit.

MEPEHOC TEIIJIA OT OCECUMMETPHUUYHbIX UCTOYHHUKOB, PACHOJ’[O)KEHHle
HA TMOBEPXHOCTH BPAHIAIOIIEIOCSA JUCKA

Annotauns — Hccnenyerca nepesada Teria OT OCECUMMETPHYHBIX MCTOYHHMKOB, PAacmojIOXKEHHbIX Ha
MOBEPXHOCTH BPALIAIOINErOCs NMCKA, B YCJOBHAX JIAMHHAPHOrO TEYEHMS HECKUMAEMON KHAKOCTH
C IOCTORHHBIMK QU3HYCCKHMH CBOMCTBAMH. Y paBHEHHE SHEPrUH, BK/IOYAIOILEE paaualibHy1o nepeaayy
Tenna TenaonpPOBOMAHOCTLIO, PELIAETCS YHCIEHHO MPH NPEHEOPEXEHNUH KaK €CTECTBEHHOW KOHBEKLIUEH,
Tak M >pdekramu Bs3koi anccunauun. HailineHo, 4To HMCMonb3yeMblif METON MOC/EAOBATEILHOM
CBEPXPEJIAKCAUMH SABJIACTCA BNOJIHE YCTOWuMBBIM. Pellenwe moxer ObiTh noaydeHo s Joboro
3a/laHHOTO Pal¥abHOrO paclpeie/ieHHs TEMNEPATYPbl WIM TEMJIOBOIO MOTOKA HA MOBEPXHOCTH.
IlpeacTaBiieHO HECKONLKO IPAHHYHBIX YCJIOBMH, B TOM YHCIIE 1BA, A3 KOTOPLIX €CTb TOYHOE PELICHHE
ypapHeHue >Heprud. HaiineHo, 410 3HaueHus KOOPOUUMEHTOB Temnomepefad, MOJIYHEHHbIE JUIS
M30TEPMHUYECKOTO OHCKA Ui Cjlyyas pacnpenesieHMs TEMNEPATYphl MO CTENCHHOMY 3aKOHY, XOpoLIO
COTIACYIOTCH C HMEIOLIMMHCS JaHHBIMH. B paccmaTpupaemoii paboTe nosie TemmnepaTyp ¥ TeInosoi
MOTOK Ha MOBEPXHOCTH CO3Jal0TCS HAFPEeBAEMOH KPYT10it 1010CKO#H (K0/IbLOM) NPOH3BOJILHON ILKPUHBL,
PACNIONOKEHHON HA anuabaTHYECKOH MOBEPXHOCTH AHCKA. Pe3ynbTaThl, MOJyHeHHbIC MPH Pa3jIHMHbIX
JHaveHMsx vucaa I1paHaTns M pa3iMYHON IUMPHHE TOJIOCKH, YKa3blBAIOT Ha Hanuuue obnactu,
B KOTOpO# npeobrnajaeT mepeiada Tenja TEMIONPOBOAHOCTHIO (06/1aCTh XapaKTEpU3YeTCs MasbIMH
yncsiamu PeitHonbaca), ¥ obnacTi, B KOTOpoit npeobianaeT koHsekuua (Gonbiuune uncna Peinonbaca).
MMpuBoasATcs 0GOGLICHHBIE 3aBUCHMOCTH MEX/y MOTOKOM Tefja Ha MOBEPXHOCTH W HAMPAKEHHEM
CBHIa HA CTEHKE, a TAKXKE TEMNEepaTypHOe NoJe BOIM3HM NOBEPXHOCTH JHCKA.



