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Abstract-Heat transfer from axisymmetric heat sources at the surface of a rotating disk is investigated 
under laminar flow conditions for incompressible flow with constant physical properties. The energy 
equation including radial conduction is solved numerically assuming that both natural convection and 
viscous dissipation effects are negligible. The successive overrelaxation technique used is found to be 
unconditionally stable. A solution can be obtained for any specified radial surface distribution of either 
temperature or heat flux. Several boundary conditions are presented, including two for which an exact 
solution exists. The heat-transfer coefficients obtained for an isothermal disk and for the case of a power 
law temperature distribution are found to be in excellent agreement with existing solutions. In the present 
work, the temperature field and surface heat flux are obtained for the case of a circular band source 
(heated ring) of arbitrary width on an adiabatic disk surface. Results obtained for various Prandtl 
numbers and source widths indicate the existence of a conduction dominated region at low Reynolds 
number and a convection dominated region at high Reynolds numbers. Correlations between surface 
heat flux and wall shear stress over the heat source, as well as the temperature field in the vicinity of the 

disk surface, are also given. 

NOMENCLATURE 

A, 

8 

constant in q vs rwr relationship; 

constant used in power law temperature 
profile ; 

C, c’, C”, constants used in laminar Nu vs Re, 

correlations ; 

,-“’ ‘Y”“, constants used in turbulent Nu vs 

Re, correlations; 
specific heat at constant pressure ; 
fluid density ; 
constant in q vs T,,,~ relationship; 
radial friction factor; 

dimensionless radial velocity; 
dimensionless tangential velocity ; 
Grashoff number; 
local heat-transfer coefficient; 

average heat-transfer coefficient ; 
dimensionless axial velocity ; 
width of band source; 
fluid thermal conductivity; 

exponent of power law temperature 
profile ; 
local Nusselt number; 

average Nusselt number; 
Prandtl number; 

heat flux per unit area; 
dimensionless heat flux per unit area ; 
radial coordinate ; 
Reynolds number, wr2/v; 
source Reynolds number, wRi/v; 

characteristic length scale of heat 
source ; 

*Research Assistant, presently with the Eastman Kodak 
Company, Rochester, NY. 

TProfessor, presently with the Shell Development Com- 
pany, Houston, TX. 

T local temperature; 

T,> characteristic temperature scale of 

source ; 

T 721 ambient temperature; 

U, radial velocity ; 
I’, tangential velocity: 

N’, axial velocity; 

2, axial coordinate. 

Greek symbols 

2, thermal diffusivity; 

‘1, dimensionless axial coordinate; 

0, dimensionless temperature; 

p. absolute viscosity: 

11, kinematic viscosity; 

P? dimensionless radial coordinate ; 
t WI’ radial wall shear stress ; 
Lc), disk angular velocity. 

INTRODUCTION 

HEAT transfer from a rotating body is of major 

importance in the analysis and design of turbo- 
machinery, especially when high temperature fluids 
are present. The rotating disk offers a simplified 
model with which more complex rotating com- 

ponents can be examined. Due to the simple 
geometrical configuration, analysis is considerably 
less involved than if the actual components were 
considered. 

Flow and heat-transfer characteristics in the three- 
dimensional boundary layer over a rotating disk 
have been studied extensively. In the present work, a 
method is presented to predict the heat-transfer 
characteristics for any axisymmetric heat source at 
the disk surface. 

The structure of the laminar flow field induced by 
the rotation of a large disk in an infinite incom- 
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pressible fluid has been established, first by von 
Karman [I] and later numerically improved by 
Cochran [?I. This structure has been experimentally 
verified by Cham and Head [3], Erian and Tong [4] 
and others. 

Heat transfer from a rotating disk under laminar 

flow conditions has been studied extensively for an 
isothermal disk surface. Wagner [5] first established 
the heat transfer from an isothermal disk into air (Pr 
= 0.72) as Nu = 0.335Re0.5. Millsaps and Pohl- 

hausen [6], using different methods, found that Nu 

= CRe” ’ for 1 < Pr < 10, where C increases with 

Prandtl number. Sparrow and Gregg [7] further 
examined the effect of Prandtl number on heat 

transfer from an isothermal disk, and found that Nu 
= CRe’.’ is valid for 0.01 < Pr < 10, where the 
constant also increases with Prandtl number. Asymp- 
totic relations were also found between C and Pr at 

very high and very low Prandtl number. 

Hartnett [8] solved for heat transfer from a 
rotating disk with a power law radial temperature 

distribution, (T- T,) = Br”. at Pr = 0.72 and found 
that Na = CRe’.” with the constant becoming larger 
with increasing m. Radial conduction terms were 

neglected in this work. 
Davies [Y] developed an approximate method to 

predict heat transfer from a rotating disk with 

arbitrary radial temperature distribution by applying 

the method of sources, i.e. the disk surface is 
regarded as an assembly of concentric circular heat 

sources forming the desired surface temperature 
distribution. An integral equation was developed to 
predict the heat-transfer coefficient at the disk 
surface but was valid only at large Prandtl numbers 

when the thermal boundary layer was deeply 

imbedded in the momentum boundary layer. Once 
again, radial conduction was neglected. 

Experimentally, Kreith et al. [lo] have fully 

investigated the heat transfer from an isothermal 

disk and have found that NIA = 0.345Rr0,5 for Pr 

= 0.72 under laminar conditions. Popiel and Bogus- 

lawski [l t] have determined the combined effects of 
free and forced convection and have found Nu 
= 0.33(Gr+ReZ)o~25 on an isothermal disk at Pr 

= 0.71. Many other experimental works are 

available. 
Ostrach and Thornton [12] have investigated the 

effect of compressibility and Sreenivasan [13] has 
investigated the effect of natural convection on the 
velocity field and the heat transfer from a rotating 

disk. 
Investigations of the turbulent flow and heat 

transfer from a rotating disk have been conducted by 
Cebeci and Abbott [14], Cooper [15], Davies [16], 
Koosinlin et ul. [17] and Kreith et ul. [lo]. 

Most of the heat-transfer work previously accom- 
plished on the rotating disk is for an isothermal 
surface. In most practical applications (a turbine 
wheel, for example) temperature distributions are 
axisymmetric but arbitrary in the radial direction. 

The present work accommodates any radial 

distribution of temperature or heat flux, and shows 
the effects of Prandtl number, Reynolds number and 
radial conduction on surface heat transfer coefficients 
from various source geometries. Furthermore, some 

ideas are offered to extend the results of this work to 
turbulent flow situations by direct analogy. 

ANALYSIS 

The equations of motion for the flow due to a 
rotating disk have been solved exactly by von 

KBrman [I] and the solution improved by Cochran 
[2]. Due to their consideration of an infinite disk 
rotating in an infinite fluid, similarity functions of the 

velocity, dependent on a single similarity variable, 

were obtained. These are defined as F(n) = u/w, 

G(q) = v/w and H(q) = TV/ ‘I* where u is the 
radial velocity, L’ the tangential velocity, w the axial 

velocity and ‘1 = z(w/v) ‘,” is the dimensionless axial 
distance from the disk surface. 

The introduction of an axisymmetric heat source 
at the disk surface will generate a temperature field 

T(r.2) in its vicinity due to convection and con- 
duction. If one ignores natural convection effects, 

significant errors will admittedly be introduced at 
high relative source temperatures and at very low 

Reynolds numbers. However, in most practical cases, 
forced convection is far more significant than free 

convection. Therefore, we shall ignore natural con- 

vection effects in this work which results in decoup- 
ling the momentum and energy equations. As a 

consequence, the velocity functions, F, G and H, 

remain unchanged by the introduction of heat 
sources at the disk surface. 

Having established the flow field, we now consider 
the axisymmetric energy equation in cylindrical 
coordinates for steady, incompressible laminar flow 

with constant fluid properties and neglecting viscous 
dissipation. The equation for the temperature is 

given by 

dc, ,(I) 

with the boundary conditions 

,‘: T(0, z) = 0 from radial symmetry, (2a) 

T(r,z) = TX as r -+ r;: and/or z -+ x8, (2b,c) 

and 

T(r, 0) or $ T(r, 0) is prescribed. (2d) 

Depending on the configuration of the heat source, 
the energy equation can be nondimensionalized by 
introducing the following variables in addition to the 
known velocity functions F, G and H and distance 1: 

where R, and 7; are characteristic length and 
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temperature scales of the heat source. The dimen- 

sionless energy equation becomes 

2 
320 

@ + Re, z - Re, PrH ‘0 
?l? arl 

+$ (1 -p’Re,PrF)$ = 0 (3) 

with the boundary conditions 

+o,,,=o 
O(p,q) = 0 as p -+ x and/or q + co (4b,c) 

and 

H(p, 0) or & H(p, 0) is prescribed. (4) 

Three surface boundary conditions are considered 

here. Two correspond to available exact solutions. 

The first is the isothermal disk with B(p,O) being a 
constant, and the second is the power law tempera- 

ture distribution with H(p,O) = Bp”. These two 
boundary conditions are used to provide a com- 
parison between established results and those of the 
present work. The third boundary condition is for a 
concentric ring source of width I on a disk surface 
which is otherwise adiabatic, as shown in Fig. 1. The 

width of the ring is arbitrary and could vary from 
very small I, corresponding to an axisymmetric line 

source, to any width desired. The ring source radius 
R, and temperature T, are chosen at the source 

midwidth, and the heat flux from the source is 
considered constant. Therefore, the third boundary 

condition may be written as follows: 

equation’s matrix, especially at high Reynolds num- 

bers. The instabilities which would have existed if 

central difference formulae were used for the radial 
convective term are discussed by Runchal and Wolf- 
shtein [18] and by Runchal [19]. 

In the ring source configuration, especially near 
the boundary between the source and the adiabatic 
surface and also for very small I/R,, large tempera- 

ture gradients are expected. To accommodate rapid 
changes in temperature, the entire finite difference 
formulation uses non-uniform grid spacing. The grid 

contains up to 80 points in the radial direction and 
18 points in the axial direction. The locations of the 
grid points are chosen to minimize errors. The finite 

difference formulation of equation (3) and the 
associated boundary conditions. as well as program- 

ing details and error analysis are described in [20]. 

Values of the functions F, G, and H are obtained 
directly or by interpolation from [2]. All com- 

putations were performed in double precision on an 
IBM 360165 computer. 

DlSCUSSlON OF RESULTS 

The numerical solution, which gives the tempera- 
ture field, permits the calculation of the local heat- 

transfer coefficient h and the local Nusselt number 
Nu from the following equations: 

k(v/w)‘;2/k = x 0(p, O)/@(p, 0) 
(?n 

(6) 

and 

Nu = hrjk 

= h(r/w)“2(Re)“2/k. (7) 

? 0 

; U(p, 0) = (5) 
constant 

Any physically possible radial distribution of heat 

flux or temperature at the disk surface may be 
accommodated in the present solution. It should be 
noted that radial conduction is included here. This 

will not affect the isothermal case since radial 
conduction is identically zero, but may affect the 
power law temperature distribution and the band 
source geometry, especially at low Reynolds 
numbers. 

Equation (3), a convective diffusion equation for 

fl(p,v), is elliptic and lends itself to numerical 
relaxation techniques for the solution of the cor- 

responding finite difference formulation. A three- 
point central difference formula is used to approx- 
imate second derivatives, and a two-point central 
difference formula is used to approximate the axial 
first derivative. Because of the strongly convective 
nature of the radial flow, a backward difference 
formula is used to approximate the radial first 
derivative. This technique stresses the upstream 
effects and improves the stability of the difference 

These properties, which are in general radius 
dependent, are presented hereafter as averages over 

- 
the source area and denoted by I; and NM. The 

results are discussed below, first, for an isothermal 
disk and a disk with power law temperature 

distribution and, then, for an adiabatic disk with a 
constant heat flux band source. The first two cases 
are presented for comparison and to show the 
reliability of the numerical solution. 

Comparison with exact solutions 
For the isothermal disk, the relation Nu = CRe’,” 

is found to be valid, with C equal to h(v/w)‘/“/k. It is 

noted that C depends only on Pr and h is constant 
everywhere on the disk surface for a particular Pr. 
Table 1 shows the values of C as given by various 
references and compares them with the present 
calculations. The agreement is very good in all cases, 

In the present formulation, radial conduction has 
always been included. In the above case of the 
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FE. 1. Flow and source geometry 

Table 1. Data comparison for an isothermal disk 

0.001 0.01 

Prandtl number 

0.1 0.72 1 IO 100 1000 

Present work 
Sparrow and Gregg [7] 
Wagner [5] 
Millsaps and Pohlhausen [6] 
Hartnett [8] 
Kreith, Taylor and Chong [lo] 
Popiel and Boguslawski [ 1 l] 

0.00152 0.00870 0.0763 0.341 0.394 1.131 2.684 6.002 
0.00088* 0.0087 1 0.0766 0.396 1.134 2.687 6.205% 

0.335 
0.28t 
0.330 
0.34 
0.33 

*These values are based on asymptotic solutions and are not exact. 
+This value is due to the use of c,. in Pr instead of cp. 

isothermal disk, the contribution of radial con- 

duction was shown to be identically zero as expected. 
In the case of a power law radial temperature profile, 

6 = BP”‘, radial conduction becomes significant at 

low Re and/or large m. Table 2 compares h(v/w)“*/k 
as given by Hartnett [8], who neglected radial 
conduction, with the present calculations. The agree- 
ment is very good for small m but deviates 

significantly for m > 4. It should be noted here that 
calculated values of h(v/w)“*/k show a gradual 
increase with radial distance from the disk center, 
and reach a constant asymptotic value at large radii. 

Table 2. Data comparison for a power law temperature 
distribution, 0 = BP”‘, at Pr = 0.72 

h (l’/‘(1) ) ’ 2 m 
_~_ .~ ~.__ ~~..~_ 

k 0 1 2 4 

Present work* 0.341 0.436 0.519 0.573 
Hartnett [8] 0.330 0.437 0.524 0.661 

*Calculated at large Re where radial conduction effects 
are small. 

On the other hand, Hartnett’s results give a constant 

heat-transfer coefficient everywhere on the disk, the 
values of which are always higher than the present 
predictions (except when m = 0, where we attribute 
the difference to numerical error). The difference 
between the asymptotic values of h(y/ta)‘!‘/k as 
calculated here and those of Hartnett [8] increase 
with m. It practically disappears for small nz. This 
behavior is attributed to the extremely large tem- 

perature gradients at large radii, i.e. large Re. when m 
is high. Therefore, radial conduction retains its 
significance at high Re. 

Heat transfer from a ring source 
For the band heat source, sketched in Fig. 1, the 

results exhibit a substantially different behavior than 
in the above cases. A qualitative description of this 
behavior may be explained as follows. At very high 
Re,, where radial conduction effects can be safely 
ignored, equation 3 may be written as 
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REYNOLDS NUMBER, LOG SCALE 

FIG. 2. Qualitative behavior of the various heat-transfer mechanisms 

Since each term contains Re,, Q(p,q) is independent 

of Re,, assuming that ye% does not vary either. 

Therefore, since h(v/o~)“‘/k becomes effectively con- 
stant, the Nusselt number which contains R, must be 

proportional to Re.f,5 and the relation Nu = C’Rey.5, 
shown as curve IV in Fig. 2, must be valid in that 
region. On the other hand, at very low Ru,, both 

convective terms become insignificant. If we define a 
new axial coordinate II’ = -_/I, equation 3 reduces to 

the pure conduction equation and is given by 

’ ?‘8 
n = 0. (9) 
“1 

Here also, the temperature field is unaffected by Re, 
and h(v/w)1!2/k is again constant for a particular 

I/R,, thus Nu = C”Ref.’ with C” > C’. This behavior 
is indicated by curve II in Fig. 2. 

IO4 

‘03 

I z’ lo2 

‘0’ 

100 

605 

As Re, decreases to intermediate values in equa- 

tion 8, I;(v/w) , “‘/k is shown to gradually decrease 

below its constant value obtained at high Re,. This 

behavior is due to the inapplicability of the constant 
value of the similarity variable qX near the disk 
center. In this work, as well as in the work of 

Millsaps and Pohlhausen [6], qX increases as the 

center of the disk is approached, thus increasing the 
thermal boundary-layer thickness and reducing the 

NM. Curve V in Fig. 2 shows this behavior 

qualitatively. 
The total heat transfer coefficient obtained here by 

solving equation (3). is shown qualitatively as curve I 
in Fig. 2. Curve III, which corresponds to the effect 

of radial conduction on the overall heat-transfer 
coefficient, is obtained by subtracting from curve I 

the contribution of curve V. Curve III. which 
coincides with curve II at low Re,, begins to decline 

0.0’ 
0.1 
1 .o 
2.0 

2.97 
1.31 

0.482 
0.34’ 

FIG. 3. Average Nusselt number dependence on source Reynolds number for different l/R,, Pr = 0.72. 
HMT Vol. 22, No 4 -Hii 
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in significance as Re, increases. Although the for Pr values of 0.72, 6.82 and 6.5, corresponding to - 
contribution of the radial conduction to the Nu air, water and light oil, respectively, are practically 

continues to increase, its relative effect becomes identical in shape, i.e. the amplitude of the bulge and 

progressively smaller as the Re, increases. This is the value of C”./C’. Increased Pr tends to make the 

certainly expected on physical grounds. effect of radial conduction limited to lower values of 
The transition between the convection-dominated Re,$. Here also C’ doubles as Pr increases by an order 

region and the conduction-dominated region con- of magnitude. It should be noted that in this Figure as 

sists of a bulge spanning a large range of Re, over well as in the previous figure calculations are carried 

which both effects are important. This bulge gra- out up to a Re, of 10h to show the significant trends, 

duallv merges at its two ends with the corresponding In reality, the Bow is turbulent for Rr, >, 3 x lOi. --_ 
asymptotic states of the Nu vs Re,. The amplitude Figures 5 and 6 show typical radial temperature 
and location of this bulge, as well as the values of C’ 

. 
profiles near the heat source in convection- 

65:0,/ 

_ 

---- 
6.82 

- ~ Eq. 3 / 
0.72 

Pr 

0.72 2.97 

6.82 6.42 

65.0 14.2 

FIG. 4. Average Nusselt number dependence on source Reynolds number for different Pr, l/R, = 0.01 

and C”, depend on both I/R, and Pr as will be shown 

below. 
The effect of I/R, at a particular Pr, as shown in 

Fig. 3, is to move the convection dominated region, 

and consequently the bulge, to a lower Re, as IIRe, 

increases. The amplitude of the bulge above the line 

given by Nu = C’Re_y,5 also decreases with increasing 

I/R,. Therefore, as i/R, -+ 2, which corresponds to 
the isothermal disk, the convection-dominate 
region spans nearly the entire Re, range. On the other 
hand, C’ approximately doubles each time IJR, 
decreases by an order of magnitude and c/C 
becomes progressiveiy greater than one. The reason 

- 
for the decrease in Nu as l/R, increases is that the 
local heat-transfer coefficient ~(~~~~)“~~~ decreases 
along the radial direction over the source. Therefore, 
the wider the source, the lower the average heat- 

transfer coefficient and thus the E The amplitude 
of the bulge and the range of Re, at which it exists 
become higher as l/R, decreases due to the fact that 
radial conduction has a more significant influence 
near thin sources even at large Rr,,. 

Figure 4 shows the effect of Pr on the overall heat- 
transfer coefficient at I/R,y =L 0.01. The three curves 

dominated and conduction-dominated ranges of ReY, 

respectively. It is interesting to note that for r~/r~~ 

> 0.15 the maximum temperature occurs radially 

downstream from the outer edge of the heat source. 
Figure 6 shows the nearly symmetric temperature 

profile expected in the conduction-dominated field 
close to the disk surface. The profiles lose their 
symmetry as l/vu, increases since some convection 
effects are always present. 

Typical axial temperature profiles at high Rr, are 

shown in Fig. 7. The thermal boundary-layer 
thickness is marked on each figure. Figure X, which 
gives axial tem~rature profiles at low Rc,, is self 
explanatory. 

The measurement of the wall shear stress under a 
laminar or a turbulent boundary layer has been 
attempted by several investigators 121,221, using a 
small heated film. The theoretical justification of 
these measurements is usually based on the relation 

4 = ,4r,jrJ + D. (10) 

and the analysis is. at best, approximate. However, 
experimental evidence supporting the above ex- 
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FIG. 5. Radial temperature profiles at high Re,, Pr = 0.72, 4, = 8.0. 
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VC-3 = 8.0 
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FIG. 6. Radial temperature profiles at low Re,, Pr = 0.72, IJ, = 8.0. 
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Axial temperature profiles at high Re,, Pr = 0.72, qrn = 8.0. 
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FIG. 8. Axial temperature profiles at low Re,, Pr = 0.72. '1, = 8.0. 

Res 
106 IO4 102 100 

Pr 0.72 

10~3 10 2 10-l 100 

f, 

FIG. 9. Correlation between dimensionless heat flux and radial friction factor, Pr = 0.72 

pression abound. In his exact solution of the fluid 
flow problem, von Kirman [t] has shown that 

r,, = 0.51d,~“‘to3~‘r, (II) 

and a radial friction factor ,j; may be defined as 
follows, 

1.02 

(Re)“’ 

(12) 

From the present numerical solution, a dimension- 
less heat flux per unit area may be defined as, 

Figure 9 shows the variation of Q with f;. Both at 

low and high Re,, Q attains a constant value (not the 
same constant), with a bulge in between analogous 

to that appearing in the NU vs Rc,~ figures. A special 
feature of the relation between Q and ,jj may be seen 

if we consider a band source at a given fixed radius, 
say 0.3 m, on a disk spinning in free air. For this case, 
rwr becomes proportional to CIJ~‘~, and, in a region 
where Q is constant, q becomes proportional to w’.‘~ ; 
therefore the following relation is valid: 

q = A?‘,” w1 (14) 

Figure IO shows the behavior of the dimensional 
heat flux per unit area as a function of the radial 
component of the wall shear stress. The bulges 
appearing above the shown lines correspond to those 
in Fig. 9 for the same l/R,. It is interesting to note 
that while the heat transfer from the source away 
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--- q = A T;(~ 

- - Eq.3, Pr = 0.72 

R, = 0.3 m 

I I , I I I 

10-8 10-6 10-4 10-2 100 

T wr (N/m*) 

FIG. 10. Dependence of heat flux per unit area on local wall shear stress in air at constant source radius, 
R,% = 0.3 m. 

from the bulges is always proportional to 5,$i3, the 

mechanisms involved are different and so are the 

constants of proportionality. At high values of T,,,, it 
is convection, while at low values it is mostly 
conduction. In practice, an additional constant, D, is 
necessary to model the q vs rib3 behavior. This 
constant is the heat transfer from the source when 

the disk is stationary. 

CONCLUSION 

The heat-transfer coefficient from a narrow band 

heat source is shown to be considerably higher than 
that obtained for an isothermal disk, but approaches 

it as the source width increases. The relation Nu 
= C’Refj2 is generally valid even at very low Re,, 

with C’ varying for different I/R,, Pr and whether the 
mechanism is convection or conduction dominated. 
The present problem is analogous to the starting 

length problem on a flat plate in the sense that the 
local heat-transfer coefficient decreases from its large 
value at the source leading edge, reaching the value 
for the fully heated surface downstream. 

In analogy to the above observations, some 
correlation between heat transfer from the isother- 
mal disk and thinner band sources in turbulent flow 
can be hypothesized. Kreith et al. [lo] have found 
experimentally that NM = C”‘Re”.8 on an isothermal 

disk in turbulent flow. Thus it seems reasonable to 
- 

expect that Nu = C”“R@* in turbulent flow for a 
band source of arbitrary width. Again the physical 
grounds are that the isothermal disk and the thinner 
band sources are joined by a continuous transition 
which changes only the value of C”“. 

The l/3 power law relating the heat flux per unit 
area to the local wall shear stress is derived from the 
present calculations. Design criteria may be obtained 
from these calculations to construct a suitable device 
to measure the wall shear stress. 
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TRANSFERT THERMIQUE A PARTIR DE SOURCES AXISYMETRIQUES 
A LA SURFACE DUN DISQUE TOURNANT 

R&urn&On etudie le transfert thermique a partir de sources de chaleur axisymttriques a la surface d’un 
disque tournant dans un ecoulement incompressible avec conditions de laminarite et de fluide a 
proprittts constantes. L’tquation d’energie incluant la conduction radiale est resolue numeriquement en 
supposant negligeable la convection naturelle et la dissipation visqueuse. La technique de surrelaxation 
successive utilisee est inconditionnellement stable. Une solution peut etre obtenue pour une distribution 
radiale donnee de temperature ou de flux thermique. On presente plusieurs conditions aux limites dont 
deux pour lesquelles il existe une solution exacte. Les coefficients de transfert thermique obtenus pour un 
disque isotherme et pour une distribution de temperature en loi de puissance sont en excellent accord 
avec des solutions existantes. Le champ de temperature et le Hux thermique a la surface sont obtenus 
dans le cas d’une source en anneau centrt de largeur arbitraire, sur la surface adiabatique du disque. Les 
resultats obtenus pour differents nombres de Prandtl et plusieurs largeurs de source montrent l’existence 
d’une region a conduction dominante aux faibles nombres de Reynolds et d’une region d transport 
dominant aux grands nombres de Reynolds. On donne aussi des formules liant le Rux thermique 
surfacique. et la tension parietale sur la source de chaleur, ainsi que le champ de temperature au voisinage 

de la surface du disque. 

WARMEUBERGANG VON ACHSENSYMMETRISCHEN QUELLEN AN DER 
OBERFLACHE EINER ROTIERENDEN SCHIEBE 

Zusammenfassung-Es wird der Warmeiibergang von achsensymmetrischen Warmequellen an der 
Oberflache einer rotierenden Schreibe bei laminarer, inkompressibler Striimung mit konstanten 
Stoffwerten untersucht. Die Energiegleichung wird mit Beriicksichtigung der radialen Warmeleitung 
unter der Annahme numerisch gel&, dab sowohl die natiirliche Konvektion als such viskositatsbedingte 
Dissipationseffekte vernachlassigbar sind. Es stellte sich heraus, da/? die schrittweise Uberrelaxationstech- 
nik in allen Fallen stabil arbeitete. Man kann fur jede spezielle radiale Verteilung der Temperatur oder 
des Warmeflusses auf der Oberflache eine Losung erhalten. Es werden verschiedene Grenzbedingungen 
angegeben, einschliel3lich zweier Bedingungen, fur die eine exakte Losung existiert. Es wurde eine 
ausgezeichnete Ubereinstimmung des Wlrmeiibergangskoeffizienten fur eine isotherme Scheibe und fur 
den Fall einer exponentiellen Temperaturverteilung mit vorhandenen Losungen gefunden. In dieser 
Arbeit werden das Temperaturfeld und der Warmeflug an der OberAache fir den Fall einer 
kreisringfijrmigen Quelle (beheizter Ring) von betrachtlicher Breite auf einer adiabaten Scheibenober- 
fllche berechnet. Die gewonnenen Ergebnisse fur verschiedene Prandtl--Zahlen und Quellenbreiten 
deuten auf das Vorhandensein eines Bereichs bei niedrigen Reynolds-Zahlen hin, in dem Warmeleitung 
vorherrscht und eines Bereichs bei hohen Reynolds-Zahlen, in dem Konvektion iiberwiegt. Dazu wurden 
die Zusammenhange zwischen dem WHrmefluB an der Oberflache und den Wandschubspannungen iiber 

der Warmequelle, als such das Temperaturfeld in der Umgebung der Scheibenoberflache behandelt. 

IIEPEHOC TEIIJIA OT OCECWMMETPMYHbIX MCTOqHMKOB, PACIIOJIOxEHHbIX 
HA IIOBEPXHOCTM BPAIIIAIOIIIEI-OCFI JJMCKA 

A~IHOTPQIISI - MccnenyeTcn nepenara renna or 0cecriMMerpmitrbtx ncro~mikoa. pacnono*ennb*x na 
noeepxeocre epatuarotuerocn necra, B yCJIOBHflX JlaMHHapHOrO TCWHHII HeCXWMaeMOii XGiLZKOCTH 

C nOcTORHHb1M)I @3HSeCKHMH CBOi%CTBaMH. YpaBHeHHe 3HeprHH, arcmo~aromee panuanbHylo nepenaqy 
renna rennonpoaonnocrbro. pemaercn ~ncnenuo npn npene6pe~enmi kas ecrecrsenuol konseKuner+i, 
TaK W 3+$eKTaMH BK3KOii JWCCHnaUHH. HatiAeHO, 'ST0 &,CnOnb3yeMblti MeTOn nOC,IenOBaTeJlbHOti 

csepxpenaKcauw4 KBnKeTcR BnonHe ycToi%iBbwf. Pewewie MoxeT 6bITb nonyqeHo nna nro6oro 

3anawioro paneanbHor0 pacnpeneneww TeMnepaTypbl wui TennoBoro noToKa Ha nosepxHocTI4. 

,,pWTaBJEHO HeCKOnbKO TpaHW4HblX yCJlOBi%ii, B TOM WfCfle L,Ba,LVl KOTOpbIX eCTb TOgHOe peWeHHe 

ypaBHeHse wepres. HaiineHo, VT0 3Haqeiniff Ko+&iwieHToB Tennonepenaw, nonyvewible nnn 
s430Teph4wwKoro wcKa nna cnysaa pacnpeaenensa TeMneparypbt no crenemioMy 3aKony. xopomo 
cornacyrorcn c rihreiomribt~c~ ,4annbtMn. B paccbtarpeBaeMoA pa6ore none TeMneparyp A ‘rennosoti 
noroK ria nosepxuocrw c03j3arorcn uarpeeaesrol rcpyrnoR nonocKofi (konbuost) npos3aonbiio8 mnpmrb*. 
pacnonoxewoii Ha anea6aTasecKoii noaepxaocrs fiHcKa. Pesynbrarbt, nonyqemibte npe pa3narsbtx 
suaverrknx 4ricna npaHnTJIK A pa3nmiHoIi mupwne nonocKr(, yltasbrsaror Ha nanrnnie o6nacre, 
B ~0T0p0l npeo6nanaer nepenaqa renna rennonpoeonuocrbro (06naCTb xaparcrepri3yerca ManbtMn 
qucnaMn Petiaonbnca), H o6nacrn, B ~o~opofi npeo6nanaer KOHBeKUHII (6onbmne ‘cacna Pei?Honbnca). 
npHBOnKTCR o606mermbte 3awicAMoCTM Mewly ~IOTOKOM Tenna Ha nosepxHocTB M HanprxeHueM 

cnsnra Ha crenKe, a raKxce resmeparypuoe none e6nusn nosepxnocrn anctca. 


